Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электротехника примеры расчета цепей и лабораторные работы. Математика решение задач

Электротехника
Примеры расчета цепей
Энергетика
Атомный реактор
Термоядерный синтез
Лабораторные работы
Переходные процессы в линейных цепях
Вынужденные колебания
Оптика
Определение удельной теплоемкости воздуха
Гироскоп
Теплопроводность тел
Математика
Примеры решения задач
Решение контрольной работы по математике

Неопределенный интеграл

Метод интегрирования по частям
Интегрирование рациональных дробей
Интегрирование тригонометрических функций
Определенный интеграл
Интегрирование по частям
Функция двух переменных
Предел функции двух переменных
Частные производные
Полное приращение и полный дифференциал
Наибольшее и наименьшее значения функции двух переменных
Дифференциальные уравнения первого порядка
Дифференциальное уравнение второго порядка
Линейные однородные уравнения второго порядка
Линейные неоднородные уравнения
Числовые ряды
Достаточные признаки сходимости
Знакопеременные ряды
Остаток ряда и его оценка
Свойства степенных рядов
Информатика
Безопасность в компьютерных сетях
Проблемы безопасности сетей
Режимы шифрования
Криптоанализ
Сертификаты
Брандмауэры
Конфиденциальность электронной переписки
Защита информации во Всемирной паутине
Курс лекций по информатике
Кабели и интерфейсы
Типы сетевой топологии
Сервер
Беспроводные сети
IP-адреса для локальных сетей
Основы безопасности при работе в сетях
Архитектура сетей Ethernet
Протоколы маршрутизации
Внешние и внутренние протоколы маршрутизации
Коды типа сервиса
Формат описания внешних маршрутов
Маршрутная база данных RIB
Машиностроительное черчение
Основные геометрические фигуры
Построить сечение пирамиды
Стандартная ортогональная аксонометрия
Способы преоразования проекций

Правильная  треугольная призма

Курс детали машин
Выполнение машиностроительных расчетов
Пример оформления чертежа привода конвейера
Расчеты деталей машин на прочность, жесткость и устойчивость
Расчёт зубьев червячного колеса
Пример выполнения курсового проекта
Заклепочное соединение
Резьбовые соединения
Зубчатые передачи
Червячные передачи
Классификация зубчатых передач
Примеры обозначения точности зубчатых передач
Проверочный расчет на выносливость при изгибе
Расчет червяка на прочность и жесткость
Цепная передача
Проектный расчет валов
Подшипники качения
Муфты продольно-разъемные
Классификация зубчатых передач
Повышение надежности машин
Плоскопаралельное движение твердого тела

 

 

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Решение матрицы

Вычисление интеграла

Вычисление двойного интеграла

  • Двойной интеграл Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных). Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:
  • Объём цилиндрического тела.. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).
  • Вычисление двойного интеграла в декартовых координатах
  • Изменим порядок интегрирования. При этом нижняя граница области D задана двумя аналитическими выражениями . В этом случае область D нужно разбить на две области Dl, D2 с помощью прямой, проходящей по оси Оу.
  • Двойной интеграл в полярных координатах Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам: Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида
  • Пример. Найти интеграл .
  • Площадь плоской криволинейной трапеции. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление тройного интеграла

Вычисление криволинейного и поверхностного интеграла

Решение примерного варианта контрольной работы .

Примеры расчета электрических и магнитных цепей

  • Трехфазные цепи В предыдущей главе рассматривалась работа электрических цепей, питающихся от однофазных синусоидальных источников тока или напряжения. Наряду с однофазными источниками существуют источники энергии, количество фаз у которых составляет два, три, четыре и т.д., и которые характеризуются тем, что ЭДС этих фаз имеют одинаковую частоту, но сдвинуты друг относительно друга на некоторую одинаковую фазу. Такие генераторы называются многофазными, а электрические цепи с такими источниками – многофазными.
  • Соединение фаз генератора и нагрузки треугольником Вторым основополагающим способом соединения является соединение типа «треугольник-треугольник»
  • Четырехпроводная звезда В четырехпроводной системе при коротком замыкании фазы приемника получаем короткое замыкание фазы источника.
  • Мощность трехфазных цепей Рассмотрим расчет мощности при соединении приемников по схеме четырехпроводной звезды и допустим, что нагрузка несимметрична.
  • Фильтры симметричных составляющих Симметричные составляющие несимметричных систем можно определить не только аналитически или графически, но и при помощи электрических схем, называемых фильтрами симметричных составляющих. Эти фильтры применяются в схемах, защищающих электрические установки. Степень асимметрии системы токов и напряжений не должна превосходить известные пределы, т.е. составляющие нулевой и обратной последовательностей системы напряжений и токов при нормальных режимах должны быть меньше некоторых наперед заданных величин, определяемых для каждой конкретной установки индивидуально.
  • Электрическая схема – это изображение электрической цепи с помощью условных обозначений. Несмотря на всё многообразие цепей, каждая из них содержит элементы двух основных типов – это источники токов и потребители.
  • Цери однофазного синусоидального тока и напряжения Рассмотренные выше источники энергии могут быть как постоянными, так и переменными, причем закон их изменения во времени может носить как периодический, так и непериодический характер. Наибольшее практическое распространение получили источники, а следовательно, и цепи, электромагнитные процессы в которых подчиняются периодическому закону.
  • Индуктивность (L) Пусть через индуктивность протекает синусоидальный ток
  • Включение резистора и катушки на постоянное напряжение Последовательное соединение элементов R,L,C
  • Частотные характеристики последовательного колебательного контура Рассмотрим частотные характеристики цепи при резонансе. В случае, когда на последовательную цепь воздействует источник синусоидального напряжения с частотой w, меняющейся от 0 до ¥, параметры цепи, а именно ее реактивное и полное сопротивления, меняются, что вызовет соответствующие изменения тока и падений напряжения на отдельных участках цепи.
  • Резонанс токов Резонансный режим, возникающий при параллельном соединении R, L, C, называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.
  • Рассчитаем мощность произвольного приемника, представленного в виде пассивного двухполюсника.
  • Коэффициент мощности Наибольшие действующие значения напряжения и тока, допускаемые для генераторов и трансформаторов, производящих и, соответственно, преобразующих электрическую энергию, зависят от их конструкции, а наибольшая мощность, которую они могут развивать, не подвергаясь опасности быть поврежденными, определяется произведением этих значений. Поэтому рациональное использование электрических машин и трансформаторов может быть достигнуто лишь в том случае, когда приемники электрической энергии обладают высоким коэффициентом мощности cos
  • Метод двух узлов Этот метод является частным случаем метода узловых потенциалов.
  • Преобразование треугольника сопротивлений в эквивалентную звезду и обратное преобразование При расчете разветвленных цепей и, особенно, при определении их входных сопротивлений может возникнуть вопрос о преобразовании треугольника сопротивлений в эквивалентную звезду или обратного преобразования. Такая процедура становится возможной при условии неизменности потенциалов на зажимах преобразуемого участка цепи.
  • Метод эквивалентного генератора (активного двухполюсника) Все методы, рассмотренные ранее, предполагали расчет токов одновременно во всех ветвях цепи. Однако в ряде случаев бывает необходимым контролировать ток в одной отдельно взятой ветви. В этом случае применяют для расчета метод эквивалентного генератора.

Расчет переходных процессов в электрических цепях

Расчет резистивных электрических цепей Резонанс в электрических цепях

  • Медоды расчета резистивных цепей Законы Кирхгофа Число независимых уравнений n, составляемых по законам Кирхгофа, равно числу неизвестных.
  • Порядок расчета методом двух узлов 1) Выбираем положительное направление напряжения между узлами схемы и определяем узловое напряжение по формуле (2), учитывая правило знаков. 2) При выбранных положительных направлениях токов в ветвях определяем их значение из уравнений, составленных по второму закону Кирхгофа для контуров, состоящих из ветви, в которой определяется ток, и найденного напряжения между узлами. 3) Правильность расчета проверяется по первому закону Кирхгофа и составлением уравнений по второму закону Кирхгофа для контуров эквивалентной схемы.
  • Анализ цепей синусоидального тока Цель данного задания – ознакомить студентов с применением символического метода расчета сложных электрических цепей, основанного на комплексном представлении воздействий цепи и вызываемых ими реакций. Данный метод относится к методам анализа линейных электрических цепей в частотной области и служит для определения реакции цепи в установившихся режимах при гармоническом воздействии.
  • Пример. В схеме заданы: 1=j110 B, , 5=j80 B, =3 A, X1'= X3=10 Ом, X2=40 Ом, X1"=r4=20 Ом, r6=30 Ом. Определить все токи методом узловых потенциалов и показания вольтметра.
  • Линейные электрические цепи Физические законы в электротехнике Электромагнитное поле представляет собой особый вид материи. Как вид материи оно обладает массой, энергией, количеством движения, может превращаться в вещество и наоборот.
  • Метод законов Кирхгофа 1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю (). 2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().
  • Физические процессы в электрической цепи Электрической цепью называется совокупность технических устройств, образующих пути для замыкания электрических токов и предназначенных для производства, передачи, распределения и потребления электрической энергии. Любая электрическая цепь предполагает наличие в своей структуре как минимум трех элементов, а именно: источников энергии, приемников энергии и соединяющих их проводов или линий электропередачи.
  • Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2.
  • Амплитудная модуляция и детектирование ам-сигналов Экспериментальное исследование физических процессов при амплитудной модуляции и детектировании АМ – сигналов.
  • Теорема об эквивалентном генераторе Формулировка теоремы: по отношению к выводам выделенной ветви или отдельного элемента остальную часть сложной схемы можно заменить а)эквивалентным генератором напряжения с ЭДС Еэ , равной напряжению холостого хода на выводах выделенной ветви или элемента (Еэ=Uxx) и с внутренним сопротивлением R0, равным входному сопротивлению схемы со стороны выделенной ветви или элемента (R0=RВХ); б)эквивалентным генератором тока с JЭ, равным току короткого замыкания на выводах выделенной ветви или элемента (Jэ=Iкз), и с внутренней проводимостью G0, равной входной проводимости схемы со стороны выделенной ветви или элемента (G0=Gвх).
  • Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :  а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.
  • Электрическая цепь с последовательным соединением элементов R, L и C
  • Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.
  • Магнитносвязанные электрические цепи Если магнитное поле, создаваемое одной из катушек, пересекает плоскость витков (сцеплено с витками) второй катушки, то такие катушки принято называть магнитносвязанными (индуктивносвязанными)
  • Линейный (без сердечника) трансформатор Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН
  • Топологические методы расчета электрических цепей
  • Электрические цепи трехфазного тока. Трехфазная система Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .
  • Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов).
  • Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN.
  • Электрические цепи периодического несинусоидального тока Как известно, в электроэнергетике в качестве стандартной формы для токов и напряжений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приводят к дополнительным потерям энергии и снижению их коэффициента полезного действия. Синусоидальность формы кривой напряжения генератора является одним из показателей качества электрической энергии как товара.
  • Расчет электрических цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.
  • Переходные процессы в электрических цепях Определение переходных процессов Установившимся режимом называется такое состояние электрической цепи (схемы), при котором наблюдается равновесие между действием на цепь источников энергии и реакцией элементов цепи на это действие. Различают следующие 4 вида установившихся режимов в цепи
  • Методы составления характеристического уравнения Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).
  • Способы составления системы операторных уравнений При расчете переходных процессов операторным методом на практике применяется два способа составления системы операторных уравнений. Сущность 1-го способа состоит в том, что для исходной электрической схемы составляется система дифференциальных уравнений по законам Кирхгофа. Затем каждое слагаемое в этих уравнениях непосредственно подвергается преобразованию Лапласа и таким образом система дифференциальных уравнений преобразуется в соответствующую ей систему операторных уравнений. Составление операторной схемы при этом не требуется.
  • Анализ переходных процессов в цепи R, L, C Переходные процессы в цепи R, L, C описываются дифференциальным уравнением 2-го порядка. Установившиеся составляющие токов и напряжений определяются видом источника энергии и определяются известными методами расчета установившихся режимов. Наибольший теоретический интерес представляют свободные составляющие, так как характер свободного процесса оказывается существенно различным в зависимости от того, являются ли корни характеристического уравнения вещественными или комплексными сопряженными.

Теория нелинейных электрических цепей

  • Расчет переходных процессов методом численного интегрирования дифференциальных уравнений на ЭВМ Система дифференциальных уравнений, которыми описывается состояние любой электрической цепи, может быть решена методом численного интегрирования на ЭВМ (метод последовательных интервалов или метод Эйлера).
  • Способы соединения четырехполюсников Сложная цепь или схема может содержать несколько четырехполюсников, соединенных между собой тем или иным образом. При расчете таких схем отдельные группы четырехполюсников можно заменить эквивалентными одиночными четырехполюсниками и, таким образом, упростить схему цепи и, соответственно, решение задачи.
  • Основные понятия и определения электрических фильтров Электрическим фильтром называется четырехполюсник, предназначенный для выделения (пропускания) сигналов определенной полосы частот. В зависимости от пропускаемого спектра частот фильтры подразделяют на 4 основных вида
  • Электрические цепи с распределенными параметрами Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R , L и C.
  • Линия с распределенными параметрами в различных режимах Расчет токов и напряжений в линии с распределенными параметрами при произвольной нагрузке  на основе совместного решения полученных ранее  комплексных уравнений. Уравнения режима линии дополняются уравнениями закона Ома для начала и конца линии
  • Последовательное соединение двух индуктивно связанных катушек
  • Линия с распределенными параметрами без потерь Для кабельных линий с распределенными параметрами, работающих на высоких частотах (линии связи), реактивные параметры значительно превосходят активные   и . При расчете режимов таких линий можно без особого ущерба для точности расчета пренебречь активными параметрами и принять их равными нулю . В таком случае линия становится идеальной или без потерь.
  • Расчет отраженных волн в линии с распределенными параметрами при подключении ее к источнику ЭДС
  • Синтез электрических цепей Характеристика задач синтеза Синтезом электрической цепи называют определение структуры цепи и параметров составляющих ее элементов R, L и С по известным свойствам (характеристикам), которым должна удовлетворять цепь. Задачи синтеза цепей противоположны по цели и содержанию задачам анализа. В отличие от задач анализа, имеющих, как правило, единственное решение, задачи синтеза могут иметь несколько решений, удовлетворяющих заданным условиям. В этом случае выбирают наиболее рациональное решение (например, по стоимости, по габаритам, по массе, по числу элементов и т. д.) Кроме того, физического решения может не существовать вообще, так как из существующих реальных элементов не всегда можно построить электрическую цепь, удовлетворяющую заданным условиям.
  • Теория нелинейных цепей Нелинейные цепи постоянного тока Нелинейные элементы, их характеристики и параметры
  • Графический метод расчета нелинейной цепи с несколькими источниками ЭДС Графический метод расчета можно применять также и для более сложных схем с несколькими источниками ЭДС. Последовательность графических операций при решении одной и той же задачи может быть различной и зависит от выбора алгоритма решения.
  • Нелинейные магнитные цепи постоянного потока Основные понятия и законы магнитной цепи Электромагнитное поле, которое лежит в основе всех многообразных явлений и процессов, исследуемых в электротехнике, имеет две равнозначные стороны – электрическую и магнитную. Как известно, в электрической цепи под воздействием источников энергии возникают электрические токи, которые протекают по электрическим проводам. Подобно электрическим цепям существуют также магнитные цепи, состоящие из магнитных проводов или кратко магнитопроводов, в которых под воздействием магнитодвижущих сил (МДС) возникают и замыкаются магнитные потоки Ф. Формальную схожесть или аналогию между электрическими и магнитными цепями в дальнейшем будем именовать принципом двойственности.
  • Расчет неразветвленной магнитной цепи Пусть требуется выполнить расчет магнитной цепи электромагнитного реле, эскизный вид которого и схема магнитной цепи показана на рис. 2а, б. Будем считать, что геометрические размеры участков и основная кривая намагничивания материала B=f(H) заданы.
  • Расчет магнитной цепи с постоянным магнитом Постоянные магниты находят применение в автоматике, измерительной технике и других отраслях для получения постоянных магнитных полей. В основе их принципа действия лежит физическое явление остаточного намагничивания. Известно, что любой ферромагнитный материал, будучи намагниченным от внешнего источника, способен сохранять некоторые остатки магнитного поля после снятия внешней намагничивающей силы. Ферромагнитные материалы, способные длительное время сохранять остаточное поле, получили название магнитотвердых.
  • Резонансные явления в нелинейных цепях Резонанс в цепи, содержащей нелинейную катушку с ферромагнитным сердечником и линейный конденсатор, получил название феррорезонанса. Для качественного исследования явления феррорезонанса воспользуемся методом эквивалентных синусоид.
  • Расчет  мгновенных значений параметров режима графическим методом При расчете мгновенных  значений напряжений u(t) и токов i(t) в нелинейной цепи используются физические  характеристики нелинейных элементов, а именно: вольтамперная характеристика u=f(i) или i=f(u) для резистора, веберамперная характеристика i=f(y) или y=f(i) для катушки и кулонвольтная характеристика q=f(u) или u=f(q) для конденсатора.
  • Расчет мгновенных значений параметров режима методом численного интегрирования системы дифференциальных уравнений. Режим нелинейной цепи любой сложности может быть описан системой нелинейных дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. Как известно из математики, система дифференциальных уравнений (как линейных так и нелинейных) может быть решена методом численного интегрирования (методы Эйлера, Рунге-Кутта). Таким образом, режим любой нелинейной цепи может быть рассчитан методом численного интегрирования дифференциальных уравнений .
  • Расчет переходного процесса методом кусочно-линейной аппроксимации Метод основан на аппроксимации характеристики нелинейного элемента отрезками прямой. При такой аппроксимации дифференциальные уравнения цепи на отдельных участках будут линейными и могут быть решены известными методами (классическим или операторным). При переходе от одного участка к другому в дифференциальных уравнениях будут скачком изменяться постоянные коэффициенты, что повлечет скачкообразное изменение коэффициентов в их решении. Решения для отдельных участков сопрягаются между собой на стыках участков  на основе законов коммутации.
  • Магнитные цепи переменного потока. Потери в сердечниках из ферромагнитного материала при периодическом перемагничивании. Магнитные цепи машин переменного тока, трансформаторов работают в режиме периодического перемагничивания, т.е. при переменном магнитном потоке ф(t). При периодическом перемагничивании ферромагнитных сердечников в них происходят потери энергии, которые выделяются в виде тепла. Эти потери условно можно разделить на два вида: а) потери на гистерезис рг и б) потери на вихревые токи рв.
  • Теория электромагнитного поля Электромагнитное поле представляет собой вид материи, характеризующийся воздействием на заряженные частицы. Как вид материи электромагнитное поле обладает массой, энергией, количеством движения, оно может превращаться в вещество и наоборот.
  • Электростатическое поле осевых зарядов Ниже будет рассмотрено несколько примеров электростатических полей, создаваемых осевыми зарядами.
  • Электростатическое поле и емкость цилиндрического провода, расположенного над проводящей плоскостью (землей) Пусть требуется рассчитать электростатическое поле и емкость цилиндрического провода, расположенного над проводящей плоскостью (землей). Заданны радиус провода R, высота подвески h (радиус R соизмерим с высотой h). К проводу приложено постоянное напряжение U
  • Электрическое поле трехфазной линии электропередачи Геометрические размеры в поперечном сечении линии электропередачи несравнимо малы по сравнению с длиной электромагнитной волны на частоте 50 Гц (). По этой причине волновые процессы в поперечном сечении линии могут не учитываться, а полученные ранее соотношения для многопроводной линии в статическом режиме с большой степенью точности могут быть применены к расчету поля линий электропередач переменного тока на промышленной частоте f = 50 Гц. Изменяющиеся по синусоидальному закону потенциалы проводов ЛЭП по отношению к параметрам поля можно считать квазистатическими или медленно изменяющимся, и расчет параметров поля для каждого момента времени можно выполнять по полученным ранее уравнениям электростатики.
  • Методы расчета электрических полей постоянного тока Электрическое поле постоянного тока, с одной стороны, и электростатическое поле вне электрических зарядов (rсв=0), с другой стороны, описываются одинаковыми по структуре математическими уравнениями. Для сравнения сведем эти уравнения в общую таблицу.
  • Механические силы в магнитном поле Пусть существует система из n магнитносвязанных электрических цепей, в которых протекают постоянные токи. Пусть одна из цепей перемещается в направлении оси х на величину dx. При перемещении цепи будет выполнена механическая работа: , где Fx -  сила, действующая на цепь в направлении х.
  • Теорема Умова-Пойтинга для электромагнитного поля Теорема Умова-Пойтинга устанавливает баланс мощностей в произвольном объеме электромагнитного поля. Математическая база теоремы разработана русским математиком Умовым в 1874 году, а в 1884 году английский физик Пойтинг применил идеи Умова к электромагнитному полю.
  • Уравнения Максвелла в комплексной форме Если векторы поля  и  изменяются во времени по синусоидальному закону, то синусоидальные функции времени могут быть представлены комплексными числами и, соответственно, сами векторы будут комплексными
  • Поверхностный эффект в плоском листе Ранее было показано, что переменное электромагнитное поле быстро затухает по мере проникновения в толщу проводящей среды. Это приводит к неравномерному распределению поля по сечению магнитопровода, и следовательно, к неравномерному распределению магнитного потока по сечению: на оси магнитопровода плотность магнитного потока наименьшая, а у поверхностного - наибольшая. Для более равномерного распределения магнитного потока по сечению магнитопровода и для уменьшения потерь на вихревые токи, магнитопроводы трансформаторов собираются из отдельных тонких листов электротехнической стали, изолированных друг от друга. Исследуем распространение переменного поля в таком листе.

Быстрый реактор со свинцовым теплоносителем БРЕСТ

Термоядерный синтез Реакторная технология Атомные реакторы

  • Термоядерный синтез Из четырех основных источников ядерной энергиив настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий (наиболее мощный) источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики
  • Эволюция Вселенной начинается с Большого Взрыва. В первые мгновения реализуется так называемая дозвездная стадия образования элементов, стадия образования легчайших элементов. Какая из этих двух реакций играет более существенную роль, зависит от температуры звезды.
  • Характерные особенности реакций горения углерода и кислорода
  • Физические основы ядерного синтеза Термодинамика ядерного синтеза То, что ядерные реакции синтеза могут давать высокий энергетический выигрыш понятно не только из астрономических данных.
  • Термоядерный синтез в земных условиях
  • Системы с замкнутой магнитной конфигурацией
  • Установки с магнитным удержанием Одной из первых и самых простых попыток реализовать идею магнитного удержания является Z-пинч - плазменный шнур между двумя электродами, ток в котором создает азимутальное магнитное поле, призванное сжимать и удерживать плазму.
  • Токамак В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом, как у всякого тока, у него появлялось собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками
  • Стелларатор Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками.
  • Сегодня лазер - неоспоримый лидер в работах по инерционному удержанию.
  • Реакторная технология Термоядерный реактор - устройство для получения энергии за счет реакций синтеза легких атомных ядер, происходящих в плазме при очень высоких температурах (выше 108К). Основное требование, которому должен удовлетворять термоядерный реактор, заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции.
  • Низкоаспектные (сферические) токамаки
  • Импульсные системы Управляемый термоядерный синтез может быть достигнут не только на реакторах с магнитными ловушками, но и на установках инерционного удержания. Конкретный путь реализации лазерного термояда был указан Н.Г.Басовым и О.Н.Крохиным в 1964 - обжимать и нагревать D-T-мишени мощными лазерными пучками, самой природой предназначенными для быстрого ввода в малый объем огромной порции энергии.
  • Пучковый термоядерный синтез
  • Рентгеновский термоядерный синтез Один из вариантов пучкового термояда базируется на использовании пучка рентгеновского излучения. При сдавливании электрическим разрядом (Z-пинч) вольфрамовых проволок, окружающих дейтериевую мишень, проволоки испаряются, создавая мощный рентгеновский импульс, который сжимает и нагревает мишень.
  • Холодный термоядерный синтез Особняком стоит метод УТС, в котором не нужны горячая плазма, микро- и макровзрывы, вообще какой-либо разогрев. Это направление, получившее название холодного термояда, или, более правильно, мюонного катализа, было предложено А.Д.Сахаровым и Я.Б.Зельдовичем в 1957 г.
  • Перспективы термоядерной энергетики
  • Атомные реакторы на быстрых нейтронах в некоторых странах запрещают из-за накопления плутония, противопоставляя им термоядерные реакторы, как не производящие плутоний и в этом смысле не представляющие интерес для террористов.
  • Топливо для реакторов на тепловых нейтронах При правильном выборе замедлителя реактор на тепловых нейтронах может работать на любом топливе - от природного урана до обогащенного урана и плутония. Топливо для ВВЭР В топливных таблетках для реакторов ВВЭР-440 и ВВЭР-1000 в качестве выгорающего поглотителя используется гадолиний (содержание оксида гадолиния варьируется в интервале 3 - 8% масс). Существующая технология позволяет добиться гомогенного распределения гадолиния по топливной таблетке и образованием твердого раствора оксида гадолиния в оксиде урана. В топливных таблетках стремятся образовать однородную пористую структуру, избегая маленьких и больших пор, и добиться однородных размеров зерен.
  • Топливо для реакторов на быстрых нейтронах В реакторах на быстрых нейтронах при подборе конструкционных и технологических материалов избегают применения веществ с низким массовым числом, которые могут замедлить нейтроны.
  • Тепловыделяющие элементы и топливные сборки Основной составной частью активной зоны ядерного энергетического реактора являются ТВЭЛы, собранные в тепловыделяющие сборки (ТВС) и содержащие определённое количество твёрдого ядерного топлива.
  • ТВЭЛ и ТВС для ВВЭР В реакторе типа ВВЭР в качестве ядерного топлива используется спеченный диоксид урана с начальным обогащением ураном-235 в стационарном режиме в диапазоне от 2.4 до 4.4 % (масс). Полная загрузка реактора топливом - 75 тонн.
  • ТВЭЛ для РБМК В качестве топлива в реакторах РБМК используется двуокись урана U. Для уменьшения размеров реактора содержание 235U в топливе предварительно повышается до 2,0 или 2,4 % на обогатительных комбинатах. Загрузка реактора ураном - 200 тонн.
  • ТВС для реактора на быстрых нейтронах, БН600 - реактор на быстрых нейтронах с натриевым теплоносителем. Электрическая мощность 600 МВт. Проектная активная зона, состоявшая из тепловыделяющих сборок с обогащением по 235U 21% и 33%, эксплуатировалась с 1980 по 1986.
  • Корпус ядерного реактора В ядерных реакторах корпусного типа, работающих на водяных или газовых теплоносителях, корпус может быть или стальной, или комбинированный из стали и напряжённого бетона
  • Совершенствование конструкционных материалов ЯЭУ
  • Коррозионная стойкость материала Коррозией называют поверхностное разрушение металлов в результате воздействия окружающей среды, в основе которого лежат химические и физико-химические (электрохимические) процессы.
  • Высокотемпературному радиационному охрупчиванию подвержены тугоплавкие металлы, коррозионно-стойкие стали и никелевые сплавы при температурах выше 0,45Тпл.