Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Решение матрицы Табличное интегрирование. Замена переменной Изменить порядок интегрирования Вычисление двойного интеграла в декартовых координатах и полярных координатах

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Замена переменной; интегрирование по частям

Задания для подготовки к практическому занятию

Прочитайте §17.2, 17.3 лекций и предложенные рассуждения и примеры. Решите задачи.

При вычислении любого неопределенного интеграла следует ответить для себя на следующие вопросы:

- является ли интеграл табличным? Может быть, он отличается от табличного лишь линейной заменой?

- если нет, может ли интеграл быть упрощен, то есть можно ли представить подынтегральную функцию в виде суммы (в этом случае каждое из слагаемых интегрируется отдельно, начиная с первого вопроса)?

- если нет, имеет ли смысл пользоваться внесением под знак дифференциала? (впрочем, если вы не уверенно пользуетесь этим методом, этот вопрос можно опустить)

 Если на все три вопроса ответ отрицательный, стоит попробовать сделать замену переменной (подстановку). Обычно при выборе подстановки удобно бывает руководствоваться принципами:

- заменять надо то, что не нравится («эстетический принцип»; обратите внимание: «не нравится» не потому, что мешает вычислить интеграл, а именно из эстетических соображений – например, корень, логарифм, знаменатель дроби);

- заменяемая функция t=t(x) не должна быть сложной (впрочем, иногда это допускается, если внутренняя функция линейная);

- если под интегралом находится сложная функция, следует заменить ее аргумент.

Иногда при этом приходится последовательно делать несколько замен переменных (или применять подведение под дифференциал).

Следует отметить, что во всех случаях, когда можно воспользоваться внесением под знак дифференциала, можно вместо этого сделать замену переменной.

Пример.

Предложенный интеграл не является табличным, даже  с точностью до линейной замены («мешает» х в числителе); не может быть сведен к сумме; вносить х под дифференциал бессмысленно, т.к. остальное выражение зависит не от х2.

Попробуем выполнить замену переменной. Перечисленным выше принципам отвечает подстановка t=1-2x (это аргумент корня, который находится в знаменателе дроби). Сделаем замену; формулы, по которым замена производится, будем записывать внутри строки вычислений в фигурных скобках: Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности

 

.

Отметим, что в данном случае вместо замены переменной можно было воспользоваться и подведением под знак дифференциала. Обратно, во всех случаях, когда применяется подведение под дифференциал, можно пользоваться вместо этого заменой переменной.

Метод интегрирования по частям применяется в стандартных случаях, перечисленных в §17.3. Он может помочь и в других случаях, но прежде следует исследовать возможность замены переменной. Примеры применения метода интегрирования по частям см.§17.3



Вычисление криволинейных интегралов 1-го рода