Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Площадь плоской криволинейной трапеции. Тройной интеграл в декартовых и сферических координатах Масса неоднородного тела. Цилиндрические координаты Сферические координаты

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

5. Определение тройного интеграла

Пусть в замкнутой пространственной  области V определена непрерывная функция трёх переменных f(х, у, z). Разобьём область V на частичные, объёмы которых обозначим

Выберем в каждой частичной области произвольную точку, в которой вычислим значение функции , i = 1,2,...,п. Составим сумму

которая называется интегральной суммой для тройного интеграла.

Предел интегральной суммы (14) при

,

не зависящий от способа разбиения области V на частичные и от выбора точек , называется тройным интегралом от функции f(x,y,z) по

области V и обозначается 

В тройном интеграле f(x,y,z) называется подынтегральной функцией, dν - дифференциалом объёма.

Свойства тройных интегралов аналогичны свойствам двойных интегралов.

Приложения тройного интеграла

С помощью тройного интеграла наряду с другими величинами можно вычислить:

1) объём области V по формуле

2) массу m тела V переменной плотностью

по формуле

 


Вычисление двойного интеграла в декартовых координатах