Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Примеры.  – функция трёх переменных;

  – функция n переменных.

Общее название: функции нескольких переменных (ФНП).

Частные производные ФНП

Ели одному из аргументов функции z = f (x, y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: – это частное приращение функции z по аргументу x; – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример.  Þ

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Касательная плоскость и нормаль к поверхности

 


Фешенебельные королевы интима с бюстом 4 размера трудятся лишьв районе Советский http://voronezh.prostitutki.black/sovetskiy/. Вожделенное приобретение половой связи, одушевления всех сексапильных мыслей не заставит себя ждать. | Похотливые белые девочки горячо отдаются своим чернокожим партнёрам в роликах категории межрассовое порно - изысканные ролики для фанатов экзотичного секса Изменить порядок интегрирования