Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Примеры.  – функция трёх переменных;

  – функция n переменных.

Общее название: функции нескольких переменных (ФНП).

Частные производные ФНП

Ели одному из аргументов функции z = f (x, y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: – это частное приращение функции z по аргументу x; – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример.  Þ

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Касательная плоскость и нормаль к поверхности

 


Изменить порядок интегрирования