Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Частные производные ФНП, заданной неявно

Если каждой паре чисел (x, y) из некоторой области DxOy соответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию .

Если существуют частные производные функции F(x, y, z):  и , то существуют частные производные от функции z (x, y), которые можно вычислить по формулам:

.  (2)

Пример. Дано: . Найти  и .

Здесь . По формулам (2) находим:

 

Уравнение F(x, y, z) = 0 неявно определяет еще две функции 2-х переменных: x = x(y, z) и y = y(x, z). Частные производные этих функций можно найти по формулам, аналогичным формулам (2), например:

.  (3)

Производная сложной ФНП. Полная производная

Пусть функция z= f (x, y, t) – функция трех переменных x, y и t, причем x и y, в свою очередь, являются функциями независимой переменной t, тогда   – это сложная функция одной переменной t, а x и y – промежуточные переменные.

Полной производной по переменной t сложной ФНП  называется её производная , вычисленная как производная функции одной переменной t в предположении, что переменные x и y также являются функциями от t, то есть при x = x(t) и y = y(t).

Полная производная вычисляется по формуле:

.  (4)

Здесь  – это полная производная функции z по переменной t при условии, что все другие переменные зависят от t;  – это частная производная функции z по переменной t при условии, что у функции есть другие независимые переменные, кроме t. При нахождении  зависимость переменных x, y от t не учитывается.

В полученный ответ следует подставить функции x = x(t) и y = y(t), чтобы выразить полную производную через независимую переменную t.

 


Изменить порядок интегрирования