Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Функцию w = f (z) можно представить в виде

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

  u = x2 – y2 – 2x; v = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

  ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y) и v(x, y) в точке (x0, y0).

Дифференцирование ФКП. Аналитические ФКП Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

Здесь внутренний интеграл вычисляется по переменной x в предположении, что y = const; результатом вычисления внутреннего интеграла является некоторая функция от y, которая затем интегрируется в постоянных пределах.

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Тройной интеграл Некоторые приложения тройных интегралов Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .


Изменить порядок интегрирования