Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Функции комплексной переменной

Определение и свойства функции комплексной переменной

 Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

Если каждому числу  по некоторому правилу f поставлено в соответствие определенное число , то говорят, что на множестве D задана функция комплексной переменной (ФКП), отображающая множество D в множество G. Обозначается: w = f (z).

Множество D называется областью определения ФКП.

Функцию w = f (z) можно представить в виде

f (z) = u(x, y) + iv(x, y),

где u(x, y) – действительная часть ФКП, v(x, y) – мнимая часть ФКП, обе они – действительные функции от x, y.

Пример 1. . Здесь  = x – iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

  u = x2 – y2 – 2x; v = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

  ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y) и v(x, y) в точке (x0, y0).

Дифференцирование ФКП. Аналитические ФКП Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

Здесь внутренний интеграл вычисляется по переменной x в предположении, что y = const; результатом вычисления внутреннего интеграла является некоторая функция от y, которая затем интегрируется в постоянных пределах.

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Тройной интеграл Некоторые приложения тройных интегралов Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .


Изменить порядок интегрирования