Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Векторное поле

5.1. Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле .

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция   от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z), Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z в области V (область V может совпадать со всем пространством).

Аналогично определяют плоское векторное поле  в двумерной области D: .

Пусть в области VxOyz задана двусторонняя поверхность σ, в каждой точке которой определен орт внешней нормали  – единичной вектор, коллинеарный нормали к поверхности в этой точке и направленный в сторону, которую условились считать «внешней» стороной поверхности.

Поток векторного поля  через поверхность σ – это интеграл по поверхности σ от скалярного произведения вектора  на орт нормали  к поверхности (рис. 6):

.

Поток – это интегральная характеристика векторного поля, она является скалярной величиной. Например, для поля скоростей  текущей жидкости поток характеризует количество жидкости, проходящей через поверхность σ в направлении «внешней» нормали в единицу времени.

Если поверхность σ задана уравнением F(x, y, z) = 0, то вектор ее нормали коллинеарен градиенту функции, задающей поверхность: , следовательно, орт нормали

 .

Для вычисления поверхностного интеграла  поверхность σ проектируют на одну из координатных плоскостей, например, в область DxOy. Тогда , и вычисление потока сводится к вычислению двойного интеграла:

,  (16)

где знак «+» следует брать в случае, когда вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению; если эти векторы противоположны по направлению, следует брать знак «–».

 При вычислении двойного интеграла  нужно подынтегральную функцию выразить через переменные x, y, используя заданное уравнение поверхности F(x, y, z) = 0.

Поток вектора через замкнутую поверхность σ в направлении ее «внешней» нормали обозначают .

 


Изменить порядок интегрирования