Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Вычисление криволинейных интегралов 1-го рода Криволинейный интеграл II рода Поверхностный интеграл 1 рода второго рода Вычисление длины дуги кривой Решение примерного варианта контрольной работы

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Соленоидальное векторное поле

Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Поле  называется векторным потенциалом векторного поля .

Практически соленоидальность векторного поля определяется при помощи его дивергенции: если во всех точках односвязной области V дивергенция векторного поля равна нулю, то это векторное поле является соленоидальным.

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – 2cos(2x – y)sin(2x – y)(2 – 0) = –sin(2(2x – y))2 = –2sin(4x – 2y).

При нахождении  считаем аргумент x постоянным:

  = (cos2(2x – y)) = 2cos(2x – y)(cos(2x – y)) =

= 2cos(2x – y)(–sin(2x – y))(2x – y) = –2cos(2x – y)sin(2x – y)((2x) – (y)) =

= – sin(2(2x – y))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =  = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

  =  = (–2sin(4x – 2y)) = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y) = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

  =  = (sin(4x – 2y)) = [считаем y постоянным] =

= cos(4x – 2y)(4x – 2y) = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:  = 4cos(4x – 2y),  = 4cos(4x – 2y)  .

Ответы: 1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0. Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2. Решение. Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется: найти уравнения линий уровня поля; найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

 


Изменить порядок интегрирования