ТОЭ
Математика
Безопасность
Графика
АЭС
Контрольная
Расчеты
Дизайн

Токамак

Задачи
Черчение
Билеты
Аварии
Курсовая
Начертательная
Типовая

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = ( + xy – 5x3) = –  + y – 15x2;

(x, y) = ( + xy – 5x3) =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

z =  + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

(М0) = – + 2 – 15(–1)2 = –15; (М0) =  – 1 = –2.

Пользуясь формулой (5), получаем уравнение касательной плоскости к поверхности σ в точке М0:

z – 1= –15(x + 1) – 2(y – 2)  15x + 2y + z + 10 = 0.

Пользуясь формулой (6), получаем канонические уравнения нормали к поверхности σ в точке М0:  =  = .

Ответы: уравнение касательной плоскости: 15x + 2y + z + 10 = 0; уравнения нормали:  =  = .

 


Задачи