Контрольная работа Решение матрицы Табличное интегрирование. Замена переменной Изменить порядок интегрирования Вычисление двойного интеграла в декартовых координатах и полярных координатах http://poker-guru.de/ war immer erstaunlich besten Casino-Spiele, verstehen Besucher.

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Двойной интеграл

Задания для подготовки к практическому занятию

Прочитайте § 23 лекций и предложенные рассуждения. Ответьте на вопросы и решите задачи

Отметим здесь, что при интегрировании функции z(x; y) по переменной х, так же как и при дифференцировании, считают y=const и пользуются обычными правилами вычисления интеграла. При этом пределы интегрирования могут зависеть от у (но не от х).

Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных).

Примеры

1.

.

2.

Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

3.

Интеграл, вычисленный в последнем примере, называется повторным интегралом и записывать его принято так:

Вопросы и задачи

п1. Вычислить интегралы, если возможно:

 а) ; б) ; в)

п2. Вычислить повторные интегралы:

 а) ; б)

Задачи к практическому занятию

Вычислить двойной интеграл по области, ограниченной указанными линиями:

1.;  2.;

3.;  4.

Изменить порядок интегрирования:

5.;  6.;

7.;  8.

Вычислить:

9.

10.

11.

12.

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения

Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

Линейные уравнения с постоянными коэффициентами Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

 Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида. Если да, выпишите значения параметров a,b, k:

Задание 1.

1) Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение.

1) Изобразим числа на комплексной плоскости. При этом числу  будет соответствовать точка , числу  - точка .

Задание 3. Указать область дифференцируемости функции  и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Решение. Выделим действительную и мнимую часть функции : Неравенство  определяет точки, лежащие на лемнискате и внутри ее. Неравенство  определяет точки, лежащие правее прямой Искомым множеством является пересечение этих областей:

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости . Решение. Для того чтобы найти образ области  при отображении , нужно найти образ границы  области , затем взять произвольную точку из области  и найти ее образ.

 

Полученное разложение содержит и правильную, и главную часть ряда Лорана.

Главная часть ряда Лорана содержит конечное число слагаемых, значит  - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

Задание 11. Вычислить интегралы от функции комплексного переменного: Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах: Решение. Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

 

Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:


Ночные бабочки с http://prostitutki-saratova.top/services/eroticheskij-massazh/ смогут пробудить вашу чувственность эротическим массажем. | Игривая шлюха портала http://prostitutkisaratova24.info/archives/types-services/kunilingus/ любит получать и делать кунилингус. Вычисление криволинейных интегралов 1-го рода