Контрольная работа Решение матрицы Табличное интегрирование. Замена переменной Изменить порядок интегрирования Вычисление двойного интеграла в декартовых координатах и полярных координатах

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

Задания для подготовки к практическому занятию

Прочитайте §3,4 лекций и предложенные примеры. Ответьте письменно на вопросы и решите задачи.

Примеры.

Даны матрицы:

1. Существуют ли обратные для данных матриц? Если да, найдите и выполните проверку.

Решение: Матрица А квадратная, ее определитель равен , следовательно, А-1 существует. Матрица В квадратная, но ее определитель , следовательно, В-1 не существует. Матрица С размера 3´2, не квадратная, следовательно, С-1 не существует.

Найдем обратную матрицу для матрицы А. Прежде всего, транспонируем матрицу А:

.

Составим присоединенную матрицу из алгебраических дополнений к элементам матрицы АТ:

Вычислим обратную матрицу по формуле

.

Проверим: произведение матрицы и ее обратной должно быть единичной матрицей

,

что и требовалось доказать, т.е. матрица А-1 найдена верно.

Замечание: удобнее перемножать целочисленные матрицы, поэтому мы сначала перемножили матрицы  и А, а результат домножили на дробь. Этим приемом мы будем пользоваться и далее.

2. Решить матричные уравнения АХ=В и YА=В.

Решение: Уравнение АХ=В, если матрица А имеет обратную, решается по формуле Х=А-1В. Получаем:

 

Уравнение YА=В, если матрица А имеет обратную, решается по формуле Y=ВА-1. Получаем:

3. Записать систему линейных уравнений в виде матричного уравнения: 

Решение: Система линейных уравнений эквивалентна матричному уравнению АХ=В, где Х – столбец неизвестных; А – матрица коэффициентов при неизвестных в левых частях уравнений (необходимо следить за очередностью неизвестных в записи уравнения; если неизвестной в уравнении нет, значит, соответствующий коэффициент равен 0); В – столбец свободных коэффициентов:

; ;

4. Решить систему из п3 при помощи правила Крамера

Решение: Прежде всего, найдем определитель системы:

,

следовательно, система имеет единственное решение, которое можно найти по правилу Крамера. Для определения значения переменной х вычислим определитель , полученный из D заменой столбца коэффициентов при переменной х на столбец свободных коэффициентов:

, значит,  .

Аналогично, определитель  получаем из D заменой столбца коэффициентов при переменной y на столбец свободных коэффициентов:

,

.

Далее, определитель  получаем из D заменой третьего столбца на столбец свободных коэффициентов:

Таким образом, решением системы является тройка чисел (-1;1;1). Подстановкой в уравнения системы убеждаемся, что решение найдено верно.

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это

значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

  Предел функции f(x) в точке a: – это (говоря упрощенно) число, к которому стремится значение функции, если ее аргумент стремится к а. Если функция непрерывна в точке а, это значит, что ее предел в этой точке равен ее значению: . Поэтому первым действием при вычислении предела функции является подстановка значения аргумента. Если при этом получилось конкретное число или бесконечность – это и есть искомый предел.

Примеры.

Даны матрицы:

1. Какого размера матрица А? Перечислите ее элементы.

Неопределенный и определенный интегралы Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

  Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2´3. Дифференцируемость ФНП

1. Найти координаты векторов  .

Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

Даны точки: А(1;0), В(3;1), С(-2;5)

1. Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координа

Решение: Составим уравнение прямой с начальной точкой А(1;0) и направляющим вектором :

(АВ): .

Приведем уравнение к общему виду:

(АВ):  x-2y-1=0


Вычисление криволинейных интегралов 1-го рода