Контрольная работа Решение матрицы Табличное интегрирование. Замена переменной Изменить порядок интегрирования Вычисление двойного интеграла в декартовых координатах и полярных координатах

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

ЗАДАНИЕ 7. Найти объем тела, ограниченного указанными поверхностями.

  Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

1) ,

2)   .

РЕШЕНИЕ.

 1). Тело  ограничено двумя поверхностями: параболоидом   и плоскостью . Изобразим это тело на чертеже (рис.75).

Рис.75

 Данное тело является -цилиндрическим брусом (рис.72); боковая поверхность выродилась в линию пересечения заданных поверхностей. Найдем область, в которую тело проектируется на плоскость , для чего из уравнений поверхностей, ограничивающих тело, следует исключить переменную  (т.е. совершить ортогональное проектирование):

  и .

Таким образом, областью  () является круг с центром в точке (0; 1) радиуса =1  (см. рис.75).

 Объем тела может быть вычислен с помощью тройного интеграла по формуле . В декартовой системе координат тройной интеграл записывается через повторный следующим образом:

,

откуда видно, что его вычисление сопряжено со значительными трудностями (на завершающей стадии вычисления повторного интеграла).

 Запишем интеграл в цилиндрической системе координат , с которой декартова система связана формулами

.

Якобиан  преобразования . Формула перехода (в интеграле) имеет вид

.

В нашем случае

.

Запишем уравнения параболоида и плоскости в цилиндрической системе координат:

.

Для окружности  имеем ; угол , очевидно, необходимо менять в пределах от 0 до . Таким образом ,

 

===.

Ответ. =.

 2) Изобразим тело , ограниченное поверхностями цилиндра , параболоида  и плоскостью  (рис.76).

Рис.76


Нетрудно убедиться, что и здесь, как и в предыдущем случае, повторный интеграл, записанный в декартовой системе координат, при вычислении требует значительных усилий; поэтому и в этом случае перейдем к цилиндрической системе координат

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам.

  Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов


Куртизанки с ресурса http://prostitutki-v-krasnodare.info/uslugi/tajskij-massazh/ сделают вам профессиональный тайский массаж. Вычисление криволинейных интегралов 1-го рода