Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Решение матрицы Табличное интегрирование. Замена переменной Изменить порядок интегрирования Вычисление двойного интеграла в декартовых координатах и полярных координатах

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

ЗАДАНИЕ 7. Найти объем тела, ограниченного указанными поверхностями.

  Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

1) ,

2)   .

РЕШЕНИЕ.

 1). Тело  ограничено двумя поверхностями: параболоидом   и плоскостью . Изобразим это тело на чертеже (рис.75).

Рис.75

 Данное тело является -цилиндрическим брусом (рис.72); боковая поверхность выродилась в линию пересечения заданных поверхностей. Найдем область, в которую тело проектируется на плоскость , для чего из уравнений поверхностей, ограничивающих тело, следует исключить переменную  (т.е. совершить ортогональное проектирование):

  и .

Таким образом, областью  () является круг с центром в точке (0; 1) радиуса =1  (см. рис.75).

 Объем тела может быть вычислен с помощью тройного интеграла по формуле . В декартовой системе координат тройной интеграл записывается через повторный следующим образом:

,

откуда видно, что его вычисление сопряжено со значительными трудностями (на завершающей стадии вычисления повторного интеграла).

 Запишем интеграл в цилиндрической системе координат , с которой декартова система связана формулами

.

Якобиан  преобразования . Формула перехода (в интеграле) имеет вид

.

В нашем случае

.

Запишем уравнения параболоида и плоскости в цилиндрической системе координат:

.

Для окружности  имеем ; угол , очевидно, необходимо менять в пределах от 0 до . Таким образом ,

 

===.

Ответ. =.

 2) Изобразим тело , ограниченное поверхностями цилиндра , параболоида  и плоскостью  (рис.76).

Рис.76


Нетрудно убедиться, что и здесь, как и в предыдущем случае, повторный интеграл, записанный в декартовой системе координат, при вычислении требует значительных усилий; поэтому и в этом случае перейдем к цилиндрической системе координат

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам.

  Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов


Вычисление криволинейных интегралов 1-го рода