Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Контрольная работа Площадь плоской криволинейной трапеции. Тройной интеграл в декартовых и сферических координатах Масса неоднородного тела. Цилиндрические координаты Сферические координаты

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Разложение матрицы в произведение простейших

1.14 Матричные уравнения

1.13 Разложение матрицы в произведение простейших

 Пусть  – некоторые матрицы. Введём следующее обозначение, предполагая при этом, что произведение в правой части существует,

.

Предложение 1.5. Любую ненулевую матрицу из  можно представить в виде произведения

,  (1.22)

где , – элементарные матрицы порядка , – элементарные матрицы порядка , и матрица  имеет вид (1.21).

  ◄ В силу предложения 1.4 существует конечное число строчных и столбцовых элементарных преобразований, приводящих матрицу   к виду . Так как проведение одного строчного элементарного преобразования в матрице  равносильно умножению этой матрицы слева на некоторую элементарную  матрицу порядка , а проведение в  одного столбцового элементарного преобразования равносильно умножению матрицы  справа на некоторую элементарную матрицу  порядка , получаем матричное равенство

.  (1.23)

Матрицы  обратимы, а обратные им матрицы являются элементарными матрицами того же порядка. Поэтому, вводя обозначения

,

,

и умножая обе части равенства (1.23) в соответствующем порядке на матрицы   слева и на матрицы  справа, получаем

,

т.е. равенство (1.22). ►

Пример 8. разложить матрицу

в произведение простейших.

 ◄ Элементарными преобразованиями приводим матрицу  к виду ,

.

Проводим эквивалентную цепочку элементарных преобразований, умножая матрицу   слева на элементарную матрицу порядка 2, отвечающую элементарному преобразованию , и умножая её справа на элементарные матрицы порядка 3, отвечающие элементарным преобразованиям , , , . В результате получаем, что

.

Определяя обратные элементарные матрицы (см. свойство 4 элементарных преобразований) и умножая на них в соответствующем порядке последнее равенство, получаем, что

. ►

 Следствием предложения 1.5 является критерий обратимости квадратной матрицы.

Предложение 1.3 Для любой матрицы  существует л‑эквивалентная ей матрица приведённого вида. Во-первых, любую ненулевую строку матрицы , с помощью строчных элементарных преобразований можно сделать приведённой, т.е. если , тогда найдется конечное число строчных элементарных преобразований, применив которые к матрице , мы получим матрицу , строка которой  имеет приведённый вид.

Пример 7. Построить матрицу  приведённого вида, л‑эквивалентную матрице Среди всех матриц размера  выделим множество диагональных матриц

Отношение эквивалентности   Бинарное отношение  на множестве называется отношением эквивалентности на множестве , если оно удовлетворяет условиям:

Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима” очевидно.

 Необходимость. Пусть матрица  обратима. Покажем, что она представима в виде произведения элементарных матриц. Прежде всего заметим, что в силу предложения 1.5 справедливо равенство (1.22), где все матрицы, входящие в это равенство, квадратные и имеют одинаковый порядок, например, .

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

Написать матрицу, транспонированную данным:

 Напомним, что при вычислении произведения двух матриц используется скалярное умножение двух арифметических векторов порядка . Будем называть это скалярное умножение «простым», если , и – «сложным», если  (сокращённо ПСУ и ССУ). Посчитаем количества ПСУ и ССУ, которые необходимо совершить, чтобы вычислить матрицу   указанными выше способами.

 Анализ трёх рассмотренных способов вычисления матрицы  позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

 


Вычисление двойного интеграла в декартовых координатах