ТОЭ
Математика
Безопасность
Графика
АЭС
Контрольная
Расчеты
Дизайн

Токамак

Задачи
Черчение
Билеты
Аварии
Курсовая
Начертательная
Типовая

Решение контрольной работы по математике. Вычисление интегралов, матриц, функций

Объём цилиндрического тела.

Двойной интеграл.

 

Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Рисунок 1. Цилиндрическое тело

Объём цилиндрического тела можно вычислить приближённо, заменив его ступенчатой фигурой следующим образом.

1. Область D произвольным образом разбивается на конечное число п элементарных областей (ячеек) D1, D2,..., Dn, площади которых обозначим соответственно ΔS, ΔS2 ,..., ΔSn. Диаметром ячейки называют наибольшее расстояние между двумя точками на её границе и обозначают diamDi.

Выберем в каждой ячейке Di произвольную точку и вычислим в ней значение. Составим сумму вида:

Каждое  слагаемое в сумме вычисляет объём прямого цилиндра с основанием Di и высотой .

Сумма (1) называется интегральной уммой для функции f(x,y) по области D. Предел интегральной суммы (1) при max diamDi→0 (n→∞) называется двойным интегралом от функции f(x,y) по области D:

В обозначении двойного интеграла D-область интегрирования f(x,y) - подынтегральная функция, dS-дифференциал площади, который можно заменить произведением дифференциалов независимых переменных dxdy.

Формула (2) позволяет вычислить объём цилиндри-ческого тела при f(x,y)>0, в чём и заключается геометрический смысл двойного интеграла.

В общем случае, если функция f(x, у) непрерывна в замкнутой области D, то двойной интеграл существует (существует предел интегральной суммы (2)) и не зависит от способа разбиения области D на частичные и от выбора точек   в них.

 


Задачи