Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Основные геометрические фигуры Построить сечение пирамиды Стандартная ортогональная аксонометрия Способы преоразования проекций Правильная  треугольная призма

Машиностроительное черчение

Пересечение геометрических фигур

Пересечение геометрических фигур с привлечением посредников Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так называемых посредников

Метод проецирующих секущих плоскостей

Пример . Построить линию пересечения плоскостей

Пример. Построить линию пересечения закрытого тора и полусферы

Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения осей вращения соосна с поверхностями и пересекает их по окружностям.

Частный случай теоремы Г.Монжа Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут быть эллипсы или параболы. Плоскости которые пересекаются по прямой, проходящей через точки пересечения линий касания сферы с заданными поверхностями.

Преобразование комплексного чертежа и способ прямоугольного треугольника

При построении новой проекции точки действует следующий закон проекционной связи. Расстояние от новой оси проекций до новой проекции точки равно расстоянию от старой оси до старой проекции.

Способ вращения вокруг проецирующей прямой В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости

Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и так далее. Посмотрим на способ прямоугольного треугольника как частный случай замены плоскостей проекций.

Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Перпендикулярность прямых и плоскостей

Линия наибольшего наклона на плоскости

Классификация метрических задач (определение углов и расстояний) Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа.

Решить предыдущую задачу способом замены плоскостей проекций

 Пример. Построить сечение пирамиды  фронтально проецирующей плоскостью .

Дано:

Пир.  

.

_____________

?:

Решение:

1).

2).

3).

4).

5). Видимость.

Форма сечения – треугольник. Вершины треугольника – результат пересечения трёх рёбер пирамиды с проецирующей плоскостью.

Обратившись к фронтальной плоскости проекций можно определить, что нижняя часть пирамиды находится под проецирующей плоскостью. Следовательно горизонтальная проекция нижней части пирамиды – не видима. Планетарные зубчатые передачи Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями.


Дано:

Кон. ,

Цил. .

_________

?: .

 Пример 3 (Рис. 39). Построить линию пересечения конической поверхности  с горизонтально проецирующим цилиндром .

Горизонтальная проекция линии пересечения совпадает с вырожденной проекцией цилиндрической поверхности. Остаётся построить фронтальную проекцию этой линии. Решив по сути дела задачу на принадлежность кривой линии к поверхности конуса при наличии ее одной проекции. Для этого на поверхности конуса необходимо задать каркас из прямолинейных образующих, построить точки пересечения линии с элементами каркаса и по фронтальным проекциям этих точек провести недостающую проекцию линии пересечения.

Видимость фронтальной проекции конуса определяется путем обращения к горизонтальной плоскости проекций.

Конические сечения

Секущая плоскость, не проходящая через вершину конуса вращения, оставляет на нем след в виде кривых 2-ого порядка (Рис.40). Если плоскость пересекает все образующие конуса, то получается замкнутая кривая: окружность или эллипс. Если же секущая плоскость параллельна к одной или к двум образующим, то результат пересечения – кривая, имеющая одну или две несобственные точки. Это – парабола или гипербола. Все зависит от степени наклона секущей плоскости относительно оси вращения в сравнении с половинным углом при вершине конуса:

Если , то – окружность,

Если , то – эллипс,

Если , то – парабола,

Если , то – гипербола.

 


Машиностроительное черчение