Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Примеры расчета цепей Расчет цепей несинусоидального переменного тока Асинхронный двигатель Выпрямители Медоды расчета резистивных цепей Метод законов Кирхгофа Теория нелинейных цепей Расчет магнитной цепи

Примеры расчета электрических и магнитных цепей

Метод законов Кирхгофа

Теоретическая база метода: 1-й и 2-й законы Кирхгофа.

1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю ().

2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().

Пусть требуется выполнить расчет режима в заданной сложной схеме (рис. 16) и определить токи в ветвях, напряжения на отдельных элементах, мощности источников и приемников энергии. Задана схема цепи и параметры ее отдельных элементов (E1, E2, J1, J1, J2, R1, R2, R3, R4, R5).

Анализируем структуру схемы: схема содержит n=3 (0, 1, 2) узлов и m=5 ветвей с неопределенными токами. В ветвях с источниками тока J токи определены источниками. Общее число уравнений должно быть равно числу определяемых токов “m”.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями токов в ветвях схемы (I1, I2, I3, I4, I5).

2) Составляется (n-1) уравнений для узлов по первому закону Кирхгофа. Уравнение для последнего n-го узла является зависимым (оно может быть получено путем сложения первых (n-1) уравнений).

3) Недостающие m-(n-1) уравнений составляются по 2-му закону Кирхгофа. Правило выбора контуров для составления уравнений: каждый последующий контур должен включать в себя хотя бы одну новую ветвь, не охваченную предыдущими уравнениями. Число независимых контуров для схемы любой сложности не может быть больше числа m-(n-1).

Ниже приведена система уравнений Кирхгофа для схемы рис. 16, состоящая из m=5 уравнений, из которых n-1=2 составлены для узлов 1 и 2 по 1-му закону Кирхгофа и m-(n-1)=3 составлены для контуров К1, К2, К3 по 2-му закону Кирхгофа:

  - узел 1,

  - узел 2,

  - контур К1,

  - контур К2,

  - контур К3.

4) Система уравнений приводится к матричной форме, составляются матрицы коэффициентов:

5) Система уравнений решается на ЭВМ по стандартной программе для решения линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные токи I1, I2, I3, I4, I5. Отрицательные результаты, получаемые для некоторых токов, означают, что их действительные (физические) направления не соответствуют направлениям, принятым в начале расчета.

6) Определяются напряжения на отдельных элементах схемы (), мощности источников ЭДС (), источников тока () и приемников (). При этом мощности приемников энергии всегда положительны, а мощности источников энергии могут быть отрицательными, если сомножители в произведениях  и  не совпадают по направлению.

 

4. Метод контурных токов

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 17. Параметры отдельных элементов схемы заданы.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(Iк1, Iк2, Iк3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои контуры с заданными токами (J1, J2).

2) Составляются m-(n-1) уравнений по 2-му закону Кирхгофа для выбранных контуров-ячеек с контурными токами Iк1, Iк2, Iк3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.

Ниже приведена система контурных уравнений для схемы рис. 17:

В обобщенной форме система контурных уравнений имеет вид:

Здесь введены следующие обозначения:

R11= R1 +R4; R22 = R3 +R4 +R5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;

R12 = R21 = -R4 ; R23 = R32 = -R5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, и всегда отрицательны – если все контурные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви, например, R13 = R31 = 0 ;

 E11 = E1 + J1R4, E22 = -E2, E33 = - E3 +J2R3 и т. д. – контурные ЭДС, равные алгебраической сумме слагаемых Enn = SE + SJR от всех источников контура.

Система контурных уравнений в матричной форме:

  или в сокращенно ,

где  - матрица контурных сопротивлений,  - матрица контурных токов,  - матрица контурных ЭДС.

3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк1, Iк2, Iк3.

4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.

I1 = Iк1; I2 = -Iк3;  I3 = -Iк2 – J2; I4 = Iк1 – Ik2+ J1; I5 = Iк2 - Ik3 .

5) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и мощности приемников энергии (Pk = Ik2 ×Rk).

 

5. Метод узловых потенциалов

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

  или 

Уравнение, связывающее потенциалы конечных точек ветви через падения напряжений на ее отдельных участках, называется потенциальным уравнением ветви. Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:

.

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Параметры отдельных элементов схемы заданы.

Принимаем потенциал узла 0 равным нулю (j0 = 0), а потенциалы узлов 1 и 2 (j1 и j2) будем считать неизвестными, подлежащими определению.

Зададимся положительными направлениями токов в ветвях схемы I1, I2, I3, I4, I5. Составим потенциальные уравнения ветвей и выразим из них токи ветвей:

I1 = (j1 – j0 + E1 )/ R1

I2 = (j2 – j0 + E2 )/ R2

I3 = (j1 – j0 + E3 )/ R3

I4 = (j0 – j1 )/ R4

I5 = (j0 - j2  )/ R5


 

Составим (n-1)  уравнение по 1-му закону Кирхгофа для узлов 1 и 2:

-I1 – I3 + I4 – J1 – J2 = 0

-I2 + I3 + I5 + J2 =0

Подставим в уравнения 1-го закона Кирхгофа значения токов, выраженные ранее из потенциальных уравнений. После приведения коэффициентов получим систему узловых уравнений:

В обобщенной форме система узловых уравнений имеет вид:

Здесь введены следующие обозначения:

 G11 =1/R1 +1/R3 +1/R4; G22 =1/R2 +1/R3 +1/R5 и т.д. – собственные проводимости узлов, равные суммам проводимостей всех ветвей, сходящихся в данном узле, всегда положительны;

  G12 = G21 = 1/R3; Gnm = Gmn– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;

J11 = - E1 /R3 – E3 /R3 – J1; J11 =- E2 /R2 – E3 /R3 + J1 и т. д. – узловые токи узлов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходящихся в узле (знак ”+”, если источник действует к узлу, и знак “-” , если источник действует от узла).

Система узловых уравнений в матричной форме:

  или сокращенно ,

где  - матрица узловых проводимостей,  - матрица узловых потенциалов,  - матрица узловых токов.

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n-1) узла считают неизвестными, подлежащими определению.

2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные потенциалы узлов j1, j2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j1, j2, ….

6) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 ×Rk).


Расчет резистивных электрических цепей Резонанс в электрических цепях