Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Примеры расчета цепей Расчет цепей несинусоидального переменного тока Асинхронный двигатель Выпрямители Медоды расчета резистивных цепей Метод законов Кирхгофа Теория нелинейных цепей Расчет магнитной цепи

Примеры расчета электрических и магнитных цепей

Топологические методы расчета электрических цепей

Топологические определения схемы

С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.

Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:

1)узлы графа соответствуют узлам схемы;

2)ветви графа соответствуют ветвям схемы;

3) направление ветвей соответствует направлению токов в ветвях схемы.

Решение задачи по теме «Двигатели постоянного тока» Условие задачи. В двигателе постоянного тока параллельного возбуждения заданы номинальные параметры: номинальное напряжение на зажимах двигателя Uн, мощность Рн, частота вращения nн, коэффициент полезного действия hн, ток возбуждения Iвн, сопротивление обмотки якоря rа, численные значения которых приводятся в табл

Любая часть графа называется подграфом. Минимальный связанный подграф, соединяющий все узлы графа и не образующий контуров, называется деревом графа (на схеме графа обозначается жирной линией). Для конкретного графа может быть составлено определенное множество вариантов деревьев, но в расчете схемы принимается любой из вариантов. Ветви графа, не входящие в его дерево, называются связями или хордами.

Структура графа и соответственно структура электрической схемы может быть описана с помощью топологических матриц или матриц соединения. Таких матриц несколько, для расчета электрических цепей используются две основные:   - матрица соединений «узлы-ветви» и - матрица соединений «контуры-ветви». 

 В общем случае сложная схема содержит «m» ветвей и «n» узлов, при этом максимальное число ветвей зависит от числа узлов: .

Составим таблицу соединений «узлы-ветви» руководствуясь следующими правилами:

1 – ветвь выходит из узла,

-1 – ветвь входит в узел,

0 – отсутствие связи с узлом.

Т а б л и ц а 1

№ узла \ № ветви

1

2

3

4

5

6

1

1

-1

0

1

0

0

2

-1

0

-1

0

1

0

3

0

1

1

0

0

-1

4

0

0

0

-1

-1

1

Так как каждая ветвь имеет только один вход (-1) и один выход (+1), то сумма чисел по вертикали для любого столбца равна нулю. Из этого следует, что независимыми являются только 3 из 4 строк таблицы. Матрица соединений  «узлы-ветви» (табл. 2) получается из приведенной выше таблицы путем вычеркивания любой строки (например, строки №4):

Т а б л и ц а 2

№ узла \ № ветви

1

2

3

4

5

6

1

1

-1

1

2

-1

-1

1

3

1

1

-1

Размерность матрицы соединений  «узлы-ветви» равна , где n-1 – число независимых узлов, m – число ветвей.

Независимыми называются контуры графа, образованные одной из хорд и ветвями дерева. Число независимых контуров соответствующих числу хорд графа: , контуры нумеруются по номеру хорды (1, 2, 3). Направление обхода контура принимается по направлению хорды, которая входит в состав этого контура.

 Составим таблицу соединений «контуры-ветви», руководствуясь следующими правилами:

1 – направление ветви совпадает с направлением обхода контура,

-1 – направление ветви не совпадает с направлением обхода контура,

0 - ветвь не входит в контур.

Т а б л и ц а 3

№ контура \ № ветви

1

2

3

4

5

6

1

1

0

0

-1

1

0

2

0

1

0

1

0

1

3

0

0

1

0

1

1

Данная таблица получила название матрицы соединений  - «контуры-ветви».Размерность матрицы соединений  равна , где – число независимых контуров, m – число ветвей.

Если матрицы соединений  и  составлены верно, то должно выполняться условие: .

Уравнения Ома и Кирхгофа в матричной форме

Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.

В общем случае любая ветвь схемы кроме комплексного сопротивления (проводимости)  может содержать источник ЭДС Ек, источник тока Jк. Схема и граф обобщенной ветви показаны на рис. 1а, б:

Ток ветви Iк, напряжение ветви Uк = j1 - j2.

Из потенциального уравнения ветви  следуют:

- уравнения Ома для к-ой ветви.

Для всех «m» ветвей составим систему уравнений по этой форме:

Заменим полученную систему из «m» уравнений матричной формой. Для этой цели введем следующие обозначения матриц:

- столбцовые матрицы соответственно напряжений, токов, источников тока и источников ЭДС.

  ; 

Уравнения Ома в матричной форме получат вид:

 

Уравнения Кирхгофа в обычной форме имеют вид:  - первый закон Кирхгофа для узлов, - второй закон Кирхгофа для контуров.

Система уравнений Кирхгофа в матричной форме получается через матрицы соединений  и :

Составленная система уравнений содержит “m” неизвестных токов и “m” неизвестных напряжений, всего 2“m” неизвестных, и непосредственно не может быть решена.

Сделаем подстановку матрицы  из матричных уравнений закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

Сделаем подстановку матрицы  из матричного уравнения закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

3. Контурные уравнения в матричной форме

Вводим понятия контурных токов Iк . Контурные токи замыкаются по контурам-ячейкам графа, именуются по имени хорды, их направление совпадает с направлением хорды. Столбовая матрица контурных токов:

Действительные токи связаны с контурными через матрицу :

Заменим в уравнениях 2-го закона Кирхгофа действительные токи [I] на контурные   согласно формуле:

 

  Введем обозначения:

 

  - матрица контурных ЭДС

  - система контурных уравнений в обобщенной матричной форме.

4. Узловые уравнения в матричной форме

Вводим понятие узловых потенциалов jу. Потенциал последнего n-го узла, для которого отсутствует строка в матрице [A] принимается равным 0. Столбовая матрица узловых потенциалов:

Напряжения ветвей связаны с потенциалами узлов через матрицу .

Подставим в уравнения 1-го закона Кирхгофа , получим:

 Введем обозначения:

  - матрица узловых проводимостей

  - матрица узловых токов.

 - система узловых уравнений в обобщенной матричной форме.


Расчет резистивных электрических цепей Резонанс в электрических цепях