Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Примеры расчета цепей Расчет цепей несинусоидального переменного тока Асинхронный двигатель Выпрямители Медоды расчета резистивных цепей Метод законов Кирхгофа Теория нелинейных цепей Расчет магнитной цепи

Примеры расчета электрических и магнитных цепей

Электрические цепи трехфазного тока.

Трехфазная система

Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Отдельные части системы называются фазами. Термин ”фаза” в электротехнике имеет два смысловых значения: первое - как момент времени для синусоидальной функции тока или напряжения, второе - как часть многофазной системы. В технике нашли применение 2-х, 3-х, 6-и и более фазные системы. В электроэнергетике наибольшее распространение получила трехфазная система, обладающая рядом преимуществ перед системами с другим числом фаз.

Трехфазная система состоит из трех электрических цепей или электрических схем (фаз), параметры режима (u,i) в которых сдвинуты во времени на . Отдельные фазы трехфазной системы согласно ГОСТ обозначаются (именуются) заглавными латинскими буквами А, В, С (основное обозначение), или цифрами 1, 2, 3 (допустимое обозначение), или заглавными латинскими буквами R, S, T (международное обозначение). Решение задачи по теме «Трехфазные асинхронные двигатели c короткозамкнутым ротором» Условие задачи. Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с линейным напряжением Uл. Заданы параметры двигателя: номинальная мощность Pн, частота вращения nн, коэффициент полезного действия hн, коэффициент мощности cos j1н при номинальной нагрузке, кратность максимального момента Ммах / Мн и кратность пускового тока Iп / Iн

Не имеет значения, какую из трех фаз именовать какой буквой А, В или С, существенным является их порядок следования друг за другом во времени. Прямым порядком следования фаз называется АВСА, при котором параметры режима (u, i) в фазе В отстают от аналогичных параметров в фазе А на 120o, а в фазе С - опережают на 120o. При обратном порядке следования фаз АС ВА параметры режима в фазе С отстают от аналогичных параметров в фазе А на 120o, а в фазе В - опережают на 120o.

Если отдельные фазы системы работают изолировано и независимо друг от друга, то система называется несвязанной. Рассмотрим работу простейшей несвязанной трехфазной системы (рис. 85). Мгновенные значения фазных ЭДС генератора сдвинуты во времени на 120o в порядке следования фаз A®B®C®A:

;

Графические диаграммы этих функций показаны на рис. 86, а векторные - на рис. 87.

Основное свойство любых переменных функций (е, u, i) в симметричной трехфазной системе состоит в том, что сумма их мгновенных значений в любой момент времени равна нулю, например, еА + еВ + еС = 0. Найдем эту сумму для разных моментов времени:

;

;

.

Как следует из векторной диаграммы рис. 87, геометрическая сумма векторов фазных ЭДС также равна нулю:

.

Если нагрузка отдельных фаз равна между собой, т.е. , то фазные токи будут равны по модулю и сдвинуты по фазе относительно своих ЭДС (напряжений ) на один и тот же угол φ, а между собой, как и ЭДС, будут сдвинуты по фазе на 120о. Следовательно, фазные токи iА, iВ, iС образуют симметричную трехфазную систему и для них будут справедливы полученные ранее выводы: iА + iВ + iС = 0; IА + IВ + IС = 0.

Преобразуем несвязанную трехфазную систему рис. 1 в связанную путем объединения трех обратных приводов в один общий привод. Согласно 1-ому закону Кирхгофа в общем проводе должен протекать суммарный ток iN = iА + iВ + iC = 0. Это означает, что потребность в обратном проводе вообще отпадает, благодаря чему достигается значительная экономия проводов при передаче энергии от трехфазного генератора к приемнику.

Достоинства трехфазной системы:

Передача энергии от генератора к потребителям трехфазным током наиболее выгодна экономически, чем при любом другом числе фаз. Например, по сравнению с двухпроводной системой достигается экономия проводов в два раза (3 провода вместо 6), соответственно уменьшаются потери энергии в проводах линии.

Трехфазная система позволяет технически просто получить круговое вращающееся поле, которое лежит в основе работы всех трехфазных машин (генераторов и двигателей).

Элементы трехфазной системы (генераторы, трансформаторы, двигатели) просты по конструкции, надежны в работе, имеют хорошие массогабаритные показатели, сравнительно дешевы, долговечны.

На выходе трехфазных генераторов имеется два уровня выходного напряжения – линейное и фазное, отличающиеся в  раз (Uл /Uф = ), что позволяет подключать к такому генератору приемники с различными номинальными напряжениями.

Благодаря своим достоинствам трехфазная система применяется в электроэнергетике для производства, передачи, распределения и потребления электрической энергии.

Трехфазная система и ее основные звенья – генератор, трансформатор, линия электропередачи, двигатель – были разработаны в 1889 году инженером Доливо-Добровольским (фирма Сименс и Шукерт). Создание этой системы явилось важным событием в истории развития теоретической и прикладной электротехники.

2. Способы соединения обмоток трехфазных генераторов

В обмотках трехфазного генератора индуктируются синусоидальные ЭДС, сдвинутые по фазе на 1200:

,

,

,

Между собой фазные обмотки генератора могут соединяться по двум различным схемам: звездой () и треугольником ().

При соединении в звезду концы фазных обмоток (фаз) генератора соединяются в общую точку N, которая называется нулевой или нейтральной, а начала обмоток служат линейными выводами генератора А, В, С (рис. 88).

  Векторная диаграмма напряжений трехфазного генератора при соединении его фазных обмоток в звезду показана на рис. 89а, б.

В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N. Фазные напряжения равны фазным ЭДС: UА=ЕА, UВ=ЕВ, UС=ЕС (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С. Линейные напряжения равны векторной разности двух фазных напряжений: UАВ =UА -UВ; UВС =UВ -UС; UСА =UС -UА .

При расчете трехфазных цепей комплексным методом фазные и линейные напряжения генератора представляются в комплексной форме, при этом один из векторов системы принимают за начальный и совмещают его с вещественной осью, а остальные вектора получают начальные фазы согласно их углам сдвига по отношению к начальному вектору. На рис. 89а показан вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается фазное напряжение фазы А. В этом случае фазные напряжения генератора в комплексной форме получат вид : , , линейные напряжения: .

На рис. 89б показан другой вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается линейное напряжение UAB. В этом случае фазные напряжения генератора в комплексной форме получат вид: , , линейные напряжения: .

 

 

 

 

 

 

 

 

Из геометрии рис. 5 получаем соотношение между модулями линейного и фазного напряжений:  UЛ = 2UФ cos 300 =2UФ=UФ.

Обмотки трехфазного генератора теоретически можно включать по схеме треугольника. В такой схеме конец каждой предыдущей фазы соединяется с началом последующей, а точки соединения служат линейными выводами генератора (рис. 90).

 

При соединении фаз в треугольник в его контуре действует сумма фазных ЭДС:  = еАВ + еВС + еСА. В реальных трехфазных генераторах технически невозможно обеспечить равенство нулю для суммарной ЭДС. Так как собственные сопротивления обмоток генератора малы, то даже незначительная по величине суммарная ЭДС 0 может вызвать в контуре треугольника уравнительный ток, соизмеримый с номинальным током генератора, что привело бы к дополнительным потерям энергии и снижению КПД генератора. По этой причине обмотки трехфазных генераторов запрещается соединять по схеме треугольника.

Номинальным напряжением в трехфазной системе называется линейное напряжение. Номинальное напряжение принято выражать в киловольтах (кВ). Шкала номинальных трехфазных напряжений, применяемых на практике, имеет вид: 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750. На потребительском уровне номинальное трехфазное напряжение может указываться в виде отношения UЛ ⁄ UФ, например: UЛ ⁄ UФ = 380 ⁄ 220 В.

5. Способы соединения фаз трехфазных приемников.

Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды () и треугольника (). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

Схема звезды применяется в том случае, если номинальное напряжение приемника соответствует (равно) фазному напряжению генератора. При соединении в звезду концы фаз приемника объединяются в одну точку “n”, называемую нулевой или нейтральной, а начала фаз подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами. Если нулевая точка приемника “n” соединена с нулевой точкой генератора “N” нулевым проводом, то схема получила название звезды с нулевым проводом (рис. 91а). При отсутствии нулевого провода схема носит название звезды без нулевого провода (рис. 91б).

Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными.

Токи, протекающие в фазах приемника по направлению от начал к концам, называются фазными. В схеме звезды фазы приемника включены последовательно с линейными проводами и по ним протекают одни и те же токи (IA, IB, IC). Поэтому для схемы звезды понятия линейные и фазные токи тождественны: IЛ = IФ.

Ток, протекающий в нулевом проводе от приемника к генератору, называется нулевым или нейтральным (IN).




Напряжения между началами и концами фаз приемника называются фазными (UAn, UBn, UCn), а напряжения между началами фаз – линейными (UAB, UBC, UCA). Линейные напряжения приемника и генератора тождественно равны.

В схеме звезды с нулевым проводом (рис. 91а) к каждой фазе приемника подводится непосредственно фазное напряжение генератора (UAN = UAn = UA, UBN = UBn = UB, UCN = UCn = UC), каждая из фаз при этом работает независимо друг от друга, а линейные (фазные) токи определяются по закону Ома:

.

Ток в нулевом проводе в соответствии с первым законом Кирхгофа равен геометрической сумме линейных (фазных) токов:

.

Пример. Исходные данные: UЛ ⁄ UФ = 380 ⁄ 220 В, ZA= 100ej35 Ом, ZВ= 110ej20 Ом, ZС= 140ej35 Ом. Определить линейные (фазные) токи IA, IB, IC и ток в нулевом проводе IN.

 А,

А,

А,

  A.

Векторная диаграмма токов и напряжений показана на рис. 92.

При симметричной нагрузке  ток в нулевом проводе  и, следовательно, надобность в нeм отпадает. Симметричные трехфазные приемники (например, трехфазные электродвигатели) включаются по схеме звезды без нулевого провода.

При несимметричной нагрузке относительная величина тока в нулевом проводе зависит от характера и степени не симметрии фазных токов. Как правило, трехфазные приёмники стремятся спроектировать по возможности близкими к симметричным, поэтому ток в нулевом проводе в реальных условиях значительно меньше линейных (фазных) токов.

В схеме звезды без нулевого провода (рис. 91б) при любой нагрузке фаз должно выполняться условие первого закона Кирхгофа:

.

Из уравнения следует вывод, что изменение одного из токов влечет изменение двух других токов, то есть отдельные фазы работают в зависимом друг от друга режиме. При несимметричной нагрузке потенциал нулевой точки приемника Un становится не равным нулю, он “смещается” на комплексной плоскости с нулевого положения, при этом фазные напряжения приемника () не равны соответствующим фазным напряжениям генератора (), происходит так называемый перекос фазных напряжений приемника (рис. 93).

Рис. 93 

Расчет токов и напряжений в схеме звезды без нулевого провода выполняется в следующей последовательности.

Определяется напряжение (потенциал) нейтральной точки приемника по методу двух узлов:

,

где ZN - комплексное сопротивление нулевого провода, при его отсутствии ZN=¥.

Фазные напряжения приемника определяются как разности потенциалов соответствующих точек:

.

Фазные токи приемника определяются по закону Ома:

Комплексные мощности фаз приемника:

.

Режим работы приемника с перекосом фазных напряжений является ненормальным и может привести его к выходу из строя. По этой причине несимметричную трехфазную нагрузку запрещается включать по схеме звезды без нулевого провода (например, осветительную нагрузку).

Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами (рис.94).

Токи, протекающие в фазах приемника по направлению от их начал к концам, называются фазными (). Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными ().

В схеме треугольника фазные и линейные напряжения приемника тождественно равны (). В этой схеме к каждой фазе приемника подводится непосредственно линейное напряжение генератора, при этом отдельные фазы работают независимо друг от друга. Фазные токи определяются по закону Ома:

.

Линейные токи определяются из уравнений первого закона Кирхгофа для вершин треугольника, они равны геометрической разности  фазных токов:

; ; .

В симметричном режиме () фазные и линейные токи симметричны, при этом отношение их модулей составляет IЛ / IФ =.

При несимметричной нагрузке соотношение между линейными и фазными токами определяется уравнениями первого закона Кирхгофа. На рис. 95 показана векторная диаграмма токов и напряжений для произвольной трехфазной цепи при соединении фаз в треугольник.


 


Недорого предлагаем купить поддельный диплом у нас на сайте для всех покупателей. Расчет резистивных электрических цепей Резонанс в электрических цепях