Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах ТВЭЛ для РБМК Корпус ядерного реактора

Стелларатор

Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке.

Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч- эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать «диверторное» действие, т.е. очищать плазму от примесей и удалять продукты реакции.

Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе «Вендельштейн VII» в Германии удалось поддерживать не несущую тока плазму с температурой более 5*106 К, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.

Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля 50 - 100 кГс и малом радиусе тороидальной камеры 2 м. Таковы параметры установки на 1000 МВт электроэнергии.

При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.

Открытая ловушка В установке типа открытой ловушки (пробкотрон) в цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации.

Чтобы не доводить дело до взрыва, термоядерная реакция должна протекать в малых дозах - в разреженной и очень нагретой дейтерий-тритиевой плазме

Начальный этап работ характеризовался обилием идей и типов ловушек (пинчи, удержание высокочастотными полями, плазменные ускорители, способы нагрева плазмы и т. д.)

К 1968 г. при омическом нагреве плазмы на токамаке Т-ЗА температуры электронов и ионов достигли 20 млн. и 4 млн. градусов соответственно - результат, в несколько раз превосходивший мировой уровень.


Топливо для реакторов на быстрых нейтронах