Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах ТВЭЛ для РБМК Корпус ядерного реактора

Стелларатор

Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке.

Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч- эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать «диверторное» действие, т.е. очищать плазму от примесей и удалять продукты реакции.

Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе «Вендельштейн VII» в Германии удалось поддерживать не несущую тока плазму с температурой более 5*106 К, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.

Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля 50 - 100 кГс и малом радиусе тороидальной камеры 2 м. Таковы параметры установки на 1000 МВт электроэнергии.

При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.

Открытая ловушка В установке типа открытой ловушки (пробкотрон) в цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации.

Чтобы не доводить дело до взрыва, термоядерная реакция должна протекать в малых дозах - в разреженной и очень нагретой дейтерий-тритиевой плазме

Начальный этап работ характеризовался обилием идей и типов ловушек (пинчи, удержание высокочастотными полями, плазменные ускорители, способы нагрева плазмы и т. д.)

К 1968 г. при омическом нагреве плазмы на токамаке Т-ЗА температуры электронов и ионов достигли 20 млн. и 4 млн. градусов соответственно - результат, в несколько раз превосходивший мировой уровень.


Топливо для реакторов на быстрых нейтронах