Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах ТВЭЛ для РБМК Корпус ядерного реактора

Холодный термоядерный синтез

Особняком стоит метод УТС, в котором не нужны горячая плазма, микро- и макровзрывы, вообще какой-либо разогрев. Это направление, получившее название холодного термояда, или, более правильно, мюонного катализа, было предложено А.Д.Сахаровым и Я.Б.Зельдовичем в 1957 г. Суть его заключается в использовании нестабильной частицы - отрицательно заряженного мюона, масса которого в 200 раз больше массы электрона. Мюон по своим свойствам очень похож на электрон, в частности, он может замещать электрон в атоме, но радиус мюонной орбиты в 200 раз меньше, чем электронной. Атомы дейтерия и трития, в которых место электрона занял мюон, могут объединяться в молекулы, где ядра дейтерия и трития сближены в 200 раз, до расстояния около 10 11 см, что все еще намного больше радиуса ядерных сил (10-13 см). В горячей плазме при таком сближении ядерная реакция не пойдет, т.к. встреча ядер длится мгновение, после чего они разлетаются. Но в мезомолекуле дейтерий и тритий постоянно находятся на таком расстоянии и могут, «почувствовав» друг друга, с заметной вероятностью осуществить «туннельный переход», вступив в D-T-реакцию. Образуются ядро гелия и нейтрон, выделится энергия синтеза, а мюон, ставший вновь свободным, может сесть на орбиту соседнего атома, заменив в нем электрон. Произойдет новое сближение ядер и новая реакция синтеза. Отрицательный мюон выступает здесь в роли активного посредника, сводящего вместе дейтерий и тритий. Он - ядерный катализатор. Оказывается, за время своей жизни (2 мкс) мюон успевает осуществить до ста D-T-реакций.

Преимущества метода очевидны: не нужны сверхвысокие температуры, нет надобности в капризной плазме, отпадают сильные магнитные поля и мощные пучки частиц. Но простота не дается даром - нужны интенсивные потоки мюонов, получаемые на ускорителях во взаимодействии энергичных протонов с ядрами, и, как в любом методе, необходимо условие положительного выхода энергии. Сейчас идет борьба за энергетическую «цену» одного мюона, и если она окажется меньше суммарного выхода реакций синтеза, мю-катализ будет включен в реестр конкурирующих путей УТС.

Есть и другие, еще более экзотические проекты. Предлагается, например, осуществлять термоядерную реакцию, сталкивая пучки ионов дейтерия в коллайдере. 2.3 Тупиковые пути ядерного синтеза

Не все подходы к методам реализации УТС оказались плодотворными. Не обошлось без дутых сенсаций и смелых надежд, оказавшихся несостоятельными.

Толчком к развертыванию исследований по холодному ядерному синтезу (ХЯС) послужило интервью М. Флешмана и С. Понса (США) 23 марта 1989 г. газете "Financial Times", в котором они заявили, что возможно создание энергетического источника промышленных масштабов на основе слияния ядер тяжелого водорода при комнатной температуре. Тогда, в 1989 году, появилась надежда на получение колоссального количества энергии в простом приборе для электролиза воды: электроды были изготовлены из палладия, используемая вода была "тяжёлой". В ходе электролиза этой тяжёлой воды с помощью электродов из палладия ядра дейтерия, якобы, сливались, образуя изотопы трития и гелия. Экспериментаторы, опять же якобы, однажды зафиксировали потоки нейтронов и добились выделения тепла, не предусмотренного законами электролиза. Ионы дейтерия скапливались в электроде, где из-за большого давления мог происходить «туннельный эффект», как при мю-катализе. Никакие теоретические оценки не подтверждали такой возможности. Всего за первые два года, прошедшие после опубликования статьи Флейшмана и Понса было опубликовано более двух тысяч экспериментальных и теоретических работ, в США выдано 96 заявок на патенты.

Ажиотаж возник благодаря двум подтверждениям из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако когда электрохимики из Техаса провели контрольные измерения не только с тяжелой, но и обыкновенной водой, выяснилось: повышенное выделение тепла было вызвано электролизом последней, поскольку термометр служил в качестве второго катода! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Так был зарегистрирован «"выброс нейтронов».

Включившиеся в исследования высококвалифицированные ученые из ведущих физических центров ряда стран мира пришли к однозначному выводу о беспочвенности надежд на возможность создания подобного источника энергии.

Безопасность установок УТС Достоверная оценка безопасности термоядерного реактора получена пока только в рамках проекта ИТЭР. В этом реакторе практически вся радиоактивность сосредоточена в твердых отходах (конструкционных материалах, бридере (бланкете) топлива и бериллии, если он есть в реакторе).


Топливо для реакторов на быстрых нейтронах