Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах ТВЭЛ для РБМК Корпус ядерного реактора

Эволюция Вселенной начинается с Большого Взрыва. В первые мгновения реализуется так называемая дозвездная стадия образования элементов, стадия образования легчайших элементов. Здесь особый интерес времена 100 - 1000 секунд после Большого Взрыва. В этот временной интервал остается в основном излучение (и нейтрино), находящееся в тепловом равновесии с небольшой примесью e-, e+ и нуклонов (протона и нейтрона). Образование электрон -
позитронных пар прекращается при температуре T < 1010 K, так как энергии фотонов становятся ниже порога образования ee- - пар (~ 1 МэВ). На этом этапе на каждый нейтрон приходится 5 протонов. Но что нейтрон - частица нестабильная. Период полураспада нейтрона составляет ~ 10 мин. Нейтроны распадаются на протон, электрон и антинейтрино. Однако не этот определяет дальнейшую судьбу нейтронов. В связи с тем, что плотность нейтронов и протонов велика, они начнут активно вступать во взаимодействие, образуя легчайшие ядра d, He, Li. Сначала нейтрон реагирует с протоном с образованием ядер дейтерия. Энергия связи дейтрона всего 2.23 МэВ. Поэтому, легко образуясь, ядра дейтерия также легко распадаются под действием фотонов на протон и нейтрон. Наиболее эффективно ядерные реакции с образованием легких ядер начинают происходить, когда температура упадет до 109 K. В результате ядерных реакций образуются d, 3He и 4He. Динамика изменения количества ядер легчайших элементов при остывании материи в первые моменты после Большого взрыва представлена на Рис.3. Китайский синдром: что происходит на самом деле На рис. 6.4 изображена полная схема защитной оболочки для PWR. В случае плавления активной зоны, проникновения ее через корпус реактора, через пространство под корпусом и, в конце концов, через бетонное основание, бассейн с расплавом будет продолжать выделять тепло, поэтому интересно рассмотреть, что будет с ним при этом происходить.

Пока время синтеза дейтерия существенно меньше времени жизни свободного нейтрона концентрация нейтронов не меняется и составляет 15% от полного числа нуклонов. Так как стабильных ядер с A = 5 и 6 не существует, ядерные реакции завершаются в основном с образованием d и 4He (Рис. 3). Выход 7Be, 6Li и 7Li составляет лишь ~ 10-9 - 10-12 от суммарного выхода изотопов по массе. Практически все нейтроны исчезают, образуя ядра 4He. При плотности вещества 10-3 - 10-4 г/см3 вероятность того, что нейтрон и протон не провзаимодействуют за время первичного нуклеосинтеза составляет менее 10-4 Так как в начале на один нейтрон приходилось 5 протонов, соотношение между числом ядер 4He и p должно быть ~ 1/10, что и наблюдается в распространенности элементов в современную эпоху.

При температурах менее 10 К начинаются реакции горения водорода. Возможны две различные последовательности реакций преобразования 4-х ядер водорода в ядро 4He, которые могут обеспечить достаточное выделение энергии для поддержания светимости звезды:

протон - протонная цепочка (pp - цепочка), в которой водород превращается непосредственно в гелий;

углеродно - азотно - кислородный цикл (CNO - цикл), в котором в качестве катализатора участвуют ядра C, N и O.

Рис. 3. Изменение выхода ядер и барионной плотности (штриховая линия) во время расширения в модели Большого Взрыва.

Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода

Следующий этап термоядерной реакции - горение гелия

В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез.


Топливо для реакторов на быстрых нейтронах