Термоядерный синтез Физические основы ядерного синтеза Токамак Реакторная технология Перспективы термоядерной энергетики Атомные реакторы на быстрых нейтронах ТВЭЛ для РБМК Корпус ядерного реактора


Натрий является хорошим теплоносителем, но у него есть недостатки: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Реакторы с жидкометаллическим теплоносителем обладают некоторыми преимуществами перед реакторами водо-водяного типа. Применение в качестве теплоносителя расплавленных металлов позволяет увеличить температуру в первом контуре при сравнительно низком давлении (5 -7 атм), что повышает экономичность установок. Однако при этом усложняется обслуживание реактора, повышается его стоимость и вследствие усиленной защиты и введения в отдельных случаях дополнительного контура увеличивается вес установок. Более того, расплавленные щелочные металлы при высоких температурах химически весьма активны, что усиливает коррозию систем. Они также бурно реагируют при контакте с водой и воздухом, вследствие чего возможны взрывы и пожары.

Газовое охлаждение нашло применение в некоторых реакторах. Используют углекислый газ, гелий, воздух и другие газы. Поскольку газы имеют небольшую плотность, низкую объёмную теплоёмкость и небольшой коэффициент теплопроводности, то для обеспечения эффективного теплосъёма необходимо пропускать через реактор значительные объёмы газа, что возможно при высоких давлениях (несколько мегапаскалей, 1МПа=10 атм). Из всех газов наиболее благоприятными теплофизическими и ядерными свойствами обладают гелий и водород, однако водород взрывоопасен и коррозионно-активен. Гелий - прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. В реакторах БН в качестве теплоносителя иногда применяется N2O4. Развитие электроэнергетики страны в 1930-е годы характеризовалось началом формирования энергосистем. Наша страна протянулась с востока на запад на одиннадцать часовых поясов. Соответственно этому в отдельных регионах меняется потребность в электроэнергии и режимы работы электростанций. Эффективнее использовать их мощность, «перекачивая» ее туда, где она необходима в данный момент. Надежность и устойчивость снабжения электроэнергией можно обеспечить лишь при наличии взаимосвязей между электростанциями, т. е. при объединении энергосистем.

Материалы - отражатели нейтронов

Отражатель нейтронов, слой вещества (обычно графита, тяжёлой воды), окружающий активную зону ядерного реактора и служащий для уменьшения утечки нейтронов из активной зоны. Отражатель нейтроновн. позволяет уменьшить критическую массу делящегося вещества и увеличить съём мощности с единицы объёма активной зоны.

Эффективность использования тепловых нейтронов в реакции деления урана можно существенно повысить, окружив образец делящегося вещества слоем материала, отражающего нейтроны. Обычно отражатель - слой неделящегося вещества с малым сечением захвата и большим сечением рассеяния. Отражатель возвращает значительную часть нейтронов, вылетающих через поверхность образца (или установки). Отражатель изготавливают из бериллия (часто в виде оксида, ВеО), бора (11В) или природного урана, но иногда используют графит, гидриды некоторых металлов и даже железо. В первых атомных бомбах для отражения нейтронов использовался карбид вольфрама.


Топливо для реакторов на быстрых нейтронах