Emporio Armani мужские    часы

Emporio Armani мужские часы

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Математика Примеры решения задач

Примеры вычисления интегралов, задачи на ряды


Числовые ряды

Определение: Пусть задана бесконечная числовая последовательность

Числовым рядом называется бесконечная сумма

Числа называются, соответственно, первым, вторым, n–м … членами ряда. называется также общим членом ряда. Ряд считается заданным, если известен общий член ряда как функция его номера n: .

Определение: Сумма n первых членов ряда называется n–й частичной суммой ряда: .

Определение: Если существует конечный предел , то его называют суммой ряда, а ряд при этом называется сходящимся. Если не существует или равен бесконечности, то ряд называется расходящимся.
Курс лекций по математике Метод итераций Решение дифференциальных уравнений

В школьном курсе математики рассматриваются такие ряды, как натуральный ряд чисел и бесконечная геометрическая прогрессия: . Известно, что при сумма бесконечно убывающей геометрической прогрессии равна , то есть бесконечно убывающая геометрическая прогрессия является сходящимся числовым рядом.

Простейшие свойства числовых рядов Применение элементов линейной алгебры в экономике Использование алгебры матриц Использование элементов алгебры матриц является одним из основных методов решения многих экономических задач. Особенно этот вопрос стал актуальным при разработке и использовании баз данных: при работе с ними почти вся информация хранится и обрабатывается в матричной форме.

Теорема 1: Если ряд

(1)

сходится и имеет сумму S, то ряд

(2)

где λ–произвольное число, также сходится и имеет сумму λ·S

Доказательство: Пусть и –n–е частичные суммы рядов (1) и (2) соответственно.

Тогда и , следовательно, ряд (2) сходится и имеет сумму

Теорема 2: Если ряды

(1)

(3)

сходятся и имеют суммы S и соответственно, то ряды

(4)

называемые суммой и разностью соответственно рядов (1) и (3), также сходятся и имеют суммы соответственно.

Доказательство: Пусть , и – n–е частичные суммы рядов (1), (3) и (4) соответственно. Тогда

,

что доказывает теорему.

Теорема 3: Ряды сходятся или сходятся одновременно

(1)

(5)

Доказательство:

Пусть

Очевидно , где k–некоторое число, не зависящее от n. Пусть ряд (1) сходится и имеет сумму S, то есть . Тогда

,

это означает, что ряд (5) сходится, так как –я частичная сумма ряда (5).

Пусть теперь ряд (5) сходится и имеет сумму , то есть . Тогда что означает сходимость ряда (1). Аналогично доказываются случаи рассходимости. Предоставляем сделать это самостоятельно.

Теорема 4: (необходимый признак сходимости ряда).

Если ряд

сходится, то .

Доказательство: Пусть данный ряд имеет сумму S.

,

Так как ряд сходится, то и , тогда , что и требовалось доказать.

Следствие: (Достаточный признак расходимости числового ряда.)

Если у числового ряда , то ряд расходится.

Действительно, если бы ряд сходился, то по теореме (4) .

Замечание: Условие является необходимым, но не достаточным для сходимости ряда. Это означает, что существуют расходящиеся ряды, у которых . В качестве примера рассмотрим ряд .

Очевидно . Рассмотрим . Так как то

Следовательно , то есть , что означает расходимость рассматриваемого ряда.


Метод интегрирования по частям